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Uniform second-order solution for supersonic flow 
over delta wing using reverse-flow 

integral method 

By JOSEPH H. CLARKE AND JAMES WALLACE 
Division of Engineering, Brown University, Providence, Rhode Island 

(Iteceived 15 JuIy 1963) 

The problem of supersonic flow over an inclined flat-plate delta wing with super- 
sonic edges is solved to second order in incidence. This solution for surface pres- 
sure is uniform and fully analytic. The approach utilizes a reverse-flow integral 
method previously developed for second-order problems. This method is aug- 
mented by a number of techniques appropriate to its framework. The simplifica- 
tion over standard techniques achieved by using these reverse-flow methods is 
quite substantial and makes the problem tractable. 

Reverse-flow procedures give a volume-surface integral relation that connects 
the second-order forward flow over the body of interest with the linearized 
reverse-flow over a related body. A singular integral equation is generated from 
the integral relation by introducing the edge sweep of the reverse-flow wing as 
a free parameter. An inversion is available which gives the second-order solution 
on the surface of the wing. The solution is then made uniformly valid using 
techniques previously developed. 

1. Introduction 
Using reverse-flow integral methods, this paper presents an analytic, uniform 

second-order solution for the surface pressure on a flat-plate delta wing with 
supersonic edges and small incidence. These second-order solutions are particu- 
larly relevant (see Clarke 1962) for flight Mach numbers between the linear 
range and the hypersonic range. The reverse-flow method for evaluating aero- 
dynamic forces or solving for the surface pressure distribution to second-order 
was developed by Clarke (1963). It exploits integral relations between the flow 
over a body of interest and the flow over a related body in which the velocity at 
infinity is equal in magnitude but opposite in direction. Parts of the formalism 
and results can be traced for their origin to the reverse-flow relations of linearized 
theory (see Ward 1955). The present research represents the first application in 
obtaining the surface pressure and, at  the same time, makes several additional 
theoretical and practical contributions to the reverse-flow method. The specific 
results of the present work can be generalized readily to other types of conical 
flow fields. 

The problem of non-linear supersonic flow over a delta wing continues to be 
of great interest because it represents a fundamental configuration which has been 
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considered frequently but not really solved in this range by any method,? to 
the writers’ knowledge. It consequently provides an interesting test of the 
usefulness of the integral method for determining higher approximations to the 
surface pressure. The governing differential equation of second-order theory is a 
three-dimensional, linear, inhomogeneous wave equation and a formal solution 
may be written in terms of volume and surface integrals of the singular source 
function. The volume integral is especially difficult to calculate at the variable 
field point because the sources are distributed over the spatial region bounded 
by the downstream Mach cone from the vertex. The intensity of this source 
distribution is a complicated function of the linearized solution. But the simpli- 
fication achieved with reverse-flow methods is quite substantial and tends to 
make the problem tractable. 

The method begins with a volume-surface integral identity that connects 
the second-order forward flow field over the delta wing with the reverse flow 
field over a related body. Further this reverse flow may be taken as the linearized 
flow over a wing with an arbitrary sweep parameter. The volume integral 
extends over the region bounded by the wing and the envelopes of disturbance 
of the forward and reverse flow; it contains only known first-order quantities 
from the forward and reverse flow fields and can be evaluated. The integrals 
over the body surface contain the second-order quantities and, after use of the 
tangency condition, only one unknown second-order quantity remains, namely, 
the essential second-order part of the surface pressure. This integral relation in 
the last named quantity is identified as a singular integral equation whose kernel 
contains the reverse-flow sweep parameter, the current variable of the equation. 
An inversion, obtained by the method of Stieltjes’s transform, is available; 
under the inversion the sweep parameter takes on the significance of the conical 
variable in the plane of the delta wing. The method of solution utilizes certain 
properties of a surface integral of first-order quantities over bhe envelope of dis- 
turbance in the reverse-flow. Because of the singular behaviour of this surface 
integral, an arbitrary analytic function is introduced into the solution, and this 
must be determined by examination of the behaviour of the solution near the 
Mach cone. After determination of the inversion, the resulting solution is made 
uniform. It may be continued off the plane of the wing and may also be general- 
ized to delta wings with a specified distribution of incidence. 

2. Aspects of first- and second-order theory 
Consider the steady supersonic homentropic flow of a perfect compressible 

gas past a quasi-cylindrical body. If 0 denotes the exact perturbation potential 
divided by U and U is the free-stream speed in the direction of the Cartesian 
co-ordinate x, then the exact equation for CD is 

(2a2/U2) VzCD = [V(x + CD) . V] [V(x + CD) . V(x + @)I, 
t [Note added in proof.] An exact solution for flow over a delta wing has recently been 

obtained using an elaborate numerical iteration procedure. The present first author, in his 
review subjoining the translation, offers some comments on this numerical solution and the 
present analytic solution. See Babaev, D. A. 1963 AIAA J .  1, 2224, Russian Sup- 
plement. 
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where 

M is the free-stream Mach number, and y is the specific-heat ratio. In  supersonic 
flow, the potential @ and its derivatives vanish at all points upstream of the shock 
or characteristic surface which bounds the influence domain of the body. On 
shock surfaces with normal n, the tangential velocity component must be 
continuous; then A(nxV@) = 0 or A@ = 0. 

The symbol A signifies the jump in the quantity across the shock. The jump 
in the normal component of the perturbation velocity is given by 

( 2 )  

(3) 

The quantities on the right-hand side of (4) are evaluated on the upstream side 
of the shock surfaces. In  addition the normal derivative of (x + @) must vanish 
on solid bodies; then n . V @  = -n . i  on x = Z(x,y), 

with Z(x,  y) proportional to the small parameter a. 
Second-order theory represents the second step in an expansion or iteration 

procedure in terms of the small parameter a. For quasi-cyclindrical bodies such 
as the delta wing, the ordinary representation of the potential is of the form 

( 5 )  

= P+f+~(a3) ,  = ~ ( a ) ,  f = o(a2). (6) 

By substituting (6) into (1) under the assumption a2 < 1, one obtains the follow- 
ing equations - ( 7 )  

- W Z X  +fyy +fm = 2M2[(N - 1) B2PxPxz + 9VPZf /  + P,P#Xl, ( 8 )  

where N = (7 + 1) M2/2B2. (9) 

The tangency condition (5) becomes, after expanding in a Maclaurin series about 
x = 0, 

P o  = Zx(x,y), f, = Z,(x,y)v,+Z,(x,y)P,-Z(x,y)P,,, on z = 0. (10a7b) 

pla = a, f, = aqx-axpZz, on z = 0. ( I l a , b )  

For a flat-plate delta wing we have Zx(x,  y) = a, Z J x ,  y) = 0 and (10) becomes 

No explicit use can be made of the shock conditions (3) and (4) when the ordinary 
expansion (6) is assumed. The pressure coefficient is given by 

This approximation to the potential is non-uniform and fails near the charac- 
teristic surfaces where yXz, pus: and vax are singular. Furthermore, the tangency 
condition ( 10) is incorrect whenever the characteristic surfaces interact the 
wing surface unless Z(x,y) = 0 at these points. Modification of the expansion 
process (6) to remove these difficulties was first undertaken by Lighthill (1949), 
who proposed expansion of both the dependent variable @ and the independent 
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variable x in a series in a and a new variable u. Then the approximation to the 
potential takes the form 

Q = du, Y ,  4 +f(% Y ,  4 + 0(a3), (13) 

x = ZG + xl(u,  y ,  Z) + x2(u, y, Z )  + O(a3),  x1 = O ( a ) ,  x2 = O ( a 2 ) .  (14) 

We have first to determine x1 by requiring the second-order solution to exhibit 
the correct behaviour, and then x2 by requiring the third-order solution to exhibit 
the correct behaviour. Further, Wallace & Clarke (1963) have suggested that 
any ordinary second-order solution can be made uiiiformily valid by application 
of an extended version of Lighthill’s (1954) principle. This extended principle 
states that the second-order flow field is made uniformly valid to second order 
if distance downstream from the foremost envelope of disturbances is always 
reinterpreted therein as distance downstream from the limit surfaces, providing 
the term xl(x, y ,  x )  pZ(x, y ,  z )  is first added to the ordinary second-order potential. 
The types of failure in the ordinary solution depend upon whether the wave 
is like that due to a wedge or to a cone in nature. The function x1 is then deter- 
mined to insure that either (a )  for cone-like waves, the solution does not become 
increasingly singular, or ( b )  for wedge-like waves, the potential is continuous. In  
general, there are two limit surfaces (xis multi-valued), but the regions of validity 
of (13) and (14) overlap and a shock (possibly of zero strength) must finally be 
inserted so as to satisfy the appropriate shock conditions (3) and (4). This process 
has been carried out in detail by Lighthill (1949) in the course of second-order 
conical solution near the Mach cone. 

The velocity components of a flow over a flat-plate delta wing are conical 
in nature. The flow field is subdivided into three regions: a region interior to the 
vertex-centred Mach cone and two regions exterior to the Mach cone. These 
regions are shown in figure 1. The usual linear solution is, in region 1, 

where n = k / B  < 1 and k is the tangent of the sweepback angle; in region 2, 

‘p = [ - a/B( 1 - n2)&] [x + Bny - Bz( 1 - n2)$]; (16) 

and in region 3, the result of replacing y by - y in (16). 
Since regions 2 and 3 are regions of constant velocity, the second-order 

solution may be arrived a t  conveniently by using an oblique transformation in 
conjunction with Van Dyke’s (1952) solution for two-dimensional flows. The 
result is, in region 2, 

f = [a2/B2( 1 - n2)] [x  + Bny-  Bx( 1 - n2)*] - [M2Na2/2B2( 1 - n2)] [x  + Bny];  (17) 
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and in region 3, the result of replacing y by - y in (17). The method of reverse 
flow will now be used to obtain the second-order solution interior to the Mach 
cone. 

3. Generation of integral equation for second-approximation to 
surface flow using reverse-flow methods? 

The flow over a given body can be connected with the flow over a related 
body for which the velocity at infinity is equal in magnitude but opposite in 
direction. The two free-stream Mach numbers and densities must also be equal. 
The equations that govern the first- or second-order forward and reverse flow can 
be written as 

V.W = Q,  V x V  = 0, V E u i + v j + w k ,  W = - B 2 u i + v j + w k .  (18) 

Y 

x = Bn, y -t 1 - nR/nF 

FIGURE 1. Envelopes of disturbance due to forward and reverse flow 
over delta wing. 

The relevant volume-surface integral identity connecting two fields distinguished 
by F and R is (Ward 1855) 

js (V,W,. Il f VR W,. n- VF. WRn) dX = - [V,V. WR 
JT 

+ VnV. W,-WR x (v x v,) -WF x (v x v,)] d T ,  (19) 
where T is the region interior to a closed surface S with inward normal n. Let 
V, = V(q+ f )  be the non-dimensionalized second-order perturbation velocity 
vector in the forward flow and let V, = Vy, be the non-dimensionalized (with 
respect to U, = - U,) velocity of the reverse flow. With the flow supersonic, 

7 When recapitulating necessary parts of the theory given by Clarke (1963), we use the 
occasion to offer alternate arguments when alternate arguments exist. 
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we apply (19)  to the volume bounded by a closed surface S that is made up of the 
envelope S, of disturbances in the forward flow, the envelope S, of disturbances 
in the reverse flow, and the common reference surface g. These surfaces are 
shown in figure 1.  

The reverse flow is chosen to satisfy V .  W, = 0 and V x V, = 0 subject to 
the boundary condition ( l o a ) .  The choice of the related body in the reverse flow 
is arbitrary but its reference surface must be coplanar with the reference surface 
of the body in the forward flow. Success with the method of reverse flow depends 
upon the skill with which thereverse-flow fieldis selected. To calculate the second- 
order surface pressure on the flat-plate delta wing, the reverse-flow wing is chosen 
here to have a constant angle of attack a, and a leading edge that is swept at  an 
unspecified angle tan-l k,, as shown in figure 1. Although a, is depicted in figure 1 
as equal to a, i t  is important to note that a, is an unrestricted parameter and no 
order estimate will be attached to it. The reverse-flow field has been chosen to 
satisfy the equations of linear theory as a convenient artifice, but any subsequent 
approximations made therein in accord with that theory will lead to error 
(see Clarke 1963). Since the edge of the wing in the reverse flow is supersonic, we 
have 
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vRe = aR/B( l -n&)g ,  VlZg = -a ,n lz / (1-12$)g ,  vlia = +aRt nR = kR/B .  (20) 

We note that S,  is the plane 
z - Bn,y + B( 1 - n&)* z = (1 -n,/n,), (21) 

and the conical element of area on CT is 

The specification of the reverse flow and its associated geometry is now com- 
plete. 

Upstream of S,, V, = 0 and upstream of S,, V, = 0. Equation (19)  should 
be applied only on either side of a surface of discontinuity in the vectors them- 
selves. According to Ward (1955), sufficient conditions for the continuity of the 
integrand of S in (19)  across a surface of discontinuity are 

A ( n x V )  = 0, A(n.W) = 0, (23a,  b )  

or, equivalently expressed in terms of the potential, 
A(v+f)  = 0, A[~ .V(p+f ) l  = 0, T = -BB2nli+n2j+n,k, ( 2 4 a , b )  

where T is the so-called co-normal vector. The co-normal vector has the property 
that T. n = 0 for the undisturbed Mach surfaces S,  and S,  so T .  V is a directional 
derivative along these surfaces. If (24a) is satisfied on S, and S,, ( 2 4 b )  follows 
automatically: a sufficient condition for continuity of the integrand of S across 
S ,  and S, in (19)  is that the potential be continuous. For vortex sheets the 
conditions given by (23) are independent. Any linearized solution, and in par- 
ticular the reverse flow, satisfies (23)  and no contributions occur from S over 
8, in (19).  The second-order potential is continuous near the Mach cone SM and 
(23) is satisfied. However, the ordinary second-order potentials given by (17) 
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are spuriously discontinuous across S,, and S,,, and the integrand of S over 
S,  is non-zero. But when we introduce the co-ordinate distortion (14) and 
determine x1 to insure continuity of potential in accord with (3), no contributions 
to S from S, will occur in the uniform second-order solution. Both the uniform 
and ordinary solutions should be identical away from S,; this can only be true if 
there are no contributions to S from the integral over S, even in the ordinary 
solution. This introduces a considerable simplification in applying the reverse- 
flow methods, since we can assume apriori that no contributions to S occur from 
the envelope of disturbance S,. 

After setting n = k on CT and using (18), (20), and ( 2 2 ) ,  we obtain from the 
scalar product of (19) and U, the result 

where 
and where the suffix F has been dropped. Since f, is evaluated by equation (1 I) ,  
the only unknown quantity remaining is f,. The corresponding statement for the 
linearized forward flow is obtained by suppressing the three second-order terms, 
and the result may be subtracted from ( 2 5 ) .  Two independent statements result, 
one for the known quantity‘p, and the other for the desired unknown quantity f,. 
This unknown function of the auxiliary variable 6’ can be considered to be 
governed by a singular integral equation whose current variable is the free 
parameter nR. Its inversion for f, allows the second-order surface pressure to 
be calculated, since the remaining terms in (12) may be calculated from the 
known linearized forward flow. 

Before proceeding with a discussion of the integral equation (25), we introduce 
the partial particular integral M2pvX of (8) given by Van Dyke (1952). This 
simplifies the volume integration since it accounts for all terms in Q except 
the term M2NBz(p;),. The integral identity (19) holds for any two vector fields 
mutually distinguished by F and €2. With V, the previous reverse-flow but 
V, regarded as a fictitious flow defined by V, = V(M2ppx), we have 

Q = M2[B2(N - 1) p; + p; + p3,, (26) 

NO contributions occur from S, since M2(pp,) is continuous there. Further, the 
term M2NB2(p;), can be integrated with respect to x. Subtracting the linear 
result, using (27) and letting b = l/nR, we have the following two results 
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- 2B’M’Nb I (b )  = where 
( b  - l/n)’ (b2 - l)* [jsx 

We may now compare the integral equations (28) and (29) given by the method 
of reverse-flow with the more usual approaches. Since a complete particular 
integral for (8) is not known, the standard approach in solving second-order 
problems is to introduce the singular kernel 

l/RB = l / [ ( x - ( ) 2 - B 2 ( y - r ) 2 - B Z ( z - ~ ) 2 ] ~  

and use one of Green’s identities to derive a formal solution (Ward 1955). This 
solution contains a volume integration of the term Q/BB that is virtually impos- 
sible to evaluate at the current point because Q is so complicated. The reverse- 
flow result contains a simpler kernel than the singular kernel 1/R, in the volume 
integral and Q can always be integrated with respect to x, leaving only surface 
integrals. Also, the properties of the integral equation are well known and an 
explicit inversion can be presented. These simplifications achieved make the 
problem tractable. 

4. Inversion of integral equation 
After integration of (28) and (29) with respect to b from infinity to b and a 

change of the integration order on the left, both integral equations assume the 
form 

If b is continued analytically off the real axis, (31) becomes a singular integral 
equation for which a suitable inversion is available in the books of Widder 
(1940) or Tricomi (1957). 

It is useful to consider (31) as an integral transform in which b = S + i r  is a 
complex variable. The transformation changes a real function g into a function 
H which is of the same class as g, namely Lp ( p  > 1). This class includes all flows 
in which the aerodynamic forces are finite. According to Widder (or Tricomi) 
(31) may be inverted by the complex formula 

Substitution off, - M2(pp,) ,  for g gives formally the second-order solution, but 
a difficulty occurs in performing the required limiting procedure on H ,  or more 
specifically, on that part of H that depends upon I. It will be shown that the 
integral I becomes a singular integral and the limit r--+ 0 cannot be performed 
without further manipulation. The essential step before applying ( 3 2 )  is to con- 
vert the surface integral I into a line integral; this can be accomplished by using 
the properties and transformations considered in conical flow theory. 

5. Generation of another partial particular integral 
Only the integration of p1: over S,, presents problems in I ,  since qz is constant 

over SR2, S,, and S,. In  the interior of the Mach cone any component of the 
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linearized velocity vector is the real part of an analytic function. For example, 
y x  for the flat-plate delta wing can be written 

--a n - t  Re cos-l--- 
v x  = j T - - $ ) B  ( 1-nt (33) 

where 
2jt = $+I/$, $ =  [ 1 - ( 1 - ~ 2 - ~ 2 ) 6 1 e i e / ( ~ 2 + ~ 2 ) 8 ,  

P = Bz/z, 0 = arg(S+iP). (34) 

Under the $-transformation, the interior of the Mach cone becomes the interior 
of the unit circle ) $ I  < 1. The wing geometry is undistorted and an area element 
dSR1(y,  z )  is related to an area element dX($, E )  in the t-plane by 

where E is the complex conjugate of$. Extensive discussions of the properties of 
conical flows may be found in Lagerstrom (1950) and Ward (1955). Conversion 
from a surface integral to a line integral is facilitated by the following complex 
forms of Stokes's theorem 

where 

and P is found by replacing i by - i  in (38). The function G is discussed below. 
The closed contour C is composed of the upper semi-circle ( E  = 1 and a straight 
line just above = 5. Since px is a constant exterior to the Mach cone, we inte- 
grate with respect to z and the total contribution to I from S,,, S,, and S, gives 
a line integral around ofco and obeo in figure 1 .  Using Stokes theorem, we have 
the surface integral " 

I,,, +ISR3 - I,, = - - -- 9; dydz. (39) 
(b  - 2M2NB2b l / n ) ,  (b2 - I ) *  s snr2+sH3 

Consider again ISR1. By regarding the integrand of that part of -Isxl along 
cfeb as a function of y and z and by adding and subtracting line integrals along 
bo and oc, we then get line integrals along ocfebo and along obco. Through use 
of Stokes's theorem, it can be shown that the line integral along ocfebo cancels 
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(39). The surviving part of I now consists of a line integral around obco and, after 
integration by parts and a little manipulation, we have 

where 

In arriving at  (40)) we have assumed that P(l) = P( - 1)  can be taken as zero. 
This will be verified. 

The function G appearing in (38) and (41) occurs because, in integrating by 
parts with respect to one variable in (38)) one may add any function of the other 
variable. After letting b = 6+ ir in (37) and taking the limit r + 0 under the 
integral sign, we obtain a singular line integral whenever the real part of b is less 
than one. Upon integration around C, a residue occurs a t  b = 6 and G must be 
retained. For all other b, G may be considered zero. Thus, the character of I 
under the limit required by the inversion (32) changes from an analytic function 
of b into a singular integral with I determined only to an arbitrary analytic 
function. 

By inserting (40) into (29), we see that the term in brackets in (40) has the same 
significance as the previously introduced partial particular integral M2yyr;  
let it  be denoted by f$. It may also be shown from (37) that f? is zero on z = 0 
since ISR1 does not contain a term of the form b/(b2- l)*. The integral I therefore 
supplies all the information required here about f N ,  which can be properly inter- 
preted as a partial particular integral of (8) itself. Equation (29) is now in the 
form (28). By analogy therewith, [ f - M 2 p p x - f N ]  is identified with the com- 
plementary solution of (8). The inversion (32) may now be applied to (29) without 
difficulty. 

To determine G we require a field argument. Strictly speaking, we have 
determined this partial particular integral only on the wing surface but, because 
[, E are independent variables, the form of the particular integral valid over the 
entire Mach cone can easily be found. After some rearrangement we have from 
(41) 

f: = - M2N( ( % P m z  + G(5) + G(E) 

+ S'q 1 + [ E l  ( 1 - 5 E ) - 1  (CPz Pe' + EPzPzik' - Peg %'I]. (42) 

This agrees with a partial particular integral for f: previously given by Moore 
(1950). From the nature of solutions to Laplace's and Poisson's equations, the 
most general form of a particular integral should contain terms of the type 
[g([) k g(%)]2 corresponding to such products of the linearized solution as 
y; ,  yzqOy, etc. After the integrations in (42) are performed, we have only the pro- 
duct terms g ( [ )  g(g), but it is a simple matter to construct solutions of the form 
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[ g ( [ )  k g($)I2 such that f $  be real. The ambiguity is now reduced to a plus or 
minus sign and this can be resolved by requiring the potential f N  to be continuous 
at the Mach cone, or by using the Lighthill results at the Mach cone. Either 
method is equivalent to the requirement that the contribution from the double 
integrals in ( 4 2 )  vanish at the Mach cone. In  performing the integrations, care 
must be exercised to choose the proper branch lines since the functions are 
complex. On the reference surface and for 0 < 6 < 1, we have 

Symmetry properties determine fg for - 1 < 6 < 0. 
(43) 

6. Solution and results 

reference surface over 0 < 6 < 1 the result 
The inversion of the integral equati0.n gives for the second-order solution on the 

(44) 
The solution for f ,  has square-root singularities at the Mach cone and the ordi- 
nary method of successive approximations fails. The solution is made uniformly 
valid by application of the rule given in § 2 .  To the ordinary second-order poten- 
tial we add the term xl(x, y, z )  pa: and replace x by u, where u and x are related 
by (14). A completely equivalent method is to add xl(x, y, z )  pxx to f ,  and then 
replace x by u. We now determine x1 to insure that f ,  is finite at  the revised 
Mach cone u = B(y2+z2)6 .  With r = (62++2)*, this gives 

xl/u = -M2p(r  = 1) /u+M2Npx(r  = l ) ,  (45) 

and the revised Mach cone becomes 

rAvI = 1 - xl/x + O(a2) = 1 + M2v(r  = l ) / x  - M2Np,(r = 1 )  + 0(a2) .  (46) 

The solution f, now exhibits a jump in velocity 

A f ,  = - M2N[pz(y == 1 - 0) - pX(y = 1 + 0) ]  pZz(y = 1) .  (47) 

As an example of the procedure, we have calculated f ,  for M = 3.0, y = 1.4, 
n = 0.35 and a! = 4"; the results are shown in figure 2. On the suction side 
of the wing, the phenomenon near the Mach cone is one of shock and f ,  correctly 
approximates this behaviour. On the pressure side the phenomenon near the 
Mach cone is one of expansion, indicating that f ,  is in error since expansion 
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waves are continuous. The width of the expansion wave though is of order a2 
and the change across the wave is given correctly by (47). The solution near the 
Mach cone was first given by Lighthill (1949) who did not attempt, however, to 
solve the problem away from the Mach cone. 
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S f Bylx 

FIGURE 2. - fz /a2 versus S on reference surface of delta wing : 
M = 3.0, = 1.4, YL = 0.35, cc = 4". 

To find the shock strength we must first determine the limit surfaces, which 
have the property that the component of velocity normal to the surface is equal 
to the speed of sound. There are two limit surfaces (x2 is multi-valued) and a 
shock, possibly of zero strength, must be inserted between them so as to  satisfy 
(4). This has previously been done by Lighthill (1949) and his result is 

(48) 

With neglect of the O(a2) terms, the equation of the shock surface reduces to 
(46). For the previously specified conditions, the calculated variation of cp 
with 6 on the pressure and suction side of the wing is shown in figures 3 and 4, 
respectively. These results are compared with those of ordinary second-order 
theory, linear theory, and Powell (1956). Further, these results exhibit the cor- 
rect behaviour near r = 1 on both sides of the wing. For a reference to significant 

A C ~  = 3 ~ 2 ~ ~ p ~ r  = 1 - 0 )  - pz(r = 1 + 011 37zz(T = 1). 
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Y .- 

4 

FIGURE 3. c ,  versus S on surface of delta wing (pressure side) : 
M = 3.0, 7 = 1.4, n = 0.35, DL = 4". 

S By/x  

FIGURE 4. c p  versus S on surface of delta wing (suction side) : 
M = 3-0, y = 1.4, n = 0.35, a = 4". 
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recent Russian work on conical flow including commentary on the work of 
Fowell, the reader may refer to the interesting paper by Reyn (1960). 

In  conclusion we see that the reverse-flow methods have been successful in 
calculating a heretofore unsolved problem. In effect, the reverse-flow integral 
approach allows us to generate particular integrals to second-order problems; 
other bodies should then be amenable to these techniques. As significant as the 
analytic techniques given in this paper is the fact that the reverse-flow formula- 
tion is better suited for numerical techniques than the formulation based on 
Green’s theorem, providing the singularities of the solution are understood. The 
given solution represents one of the few non-linear analytic wing solutions 
available, and can serve as a prototype for other three-dimensional problems 
that might require numerical techniques to solve. Also the solution presented 
in this paper can easily be generalized to include delta wings with arbitrary 
slope distribution, providing the flow remains conical. 
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